BACKGROUND

- High tumor grade is included in practice guidelines as a marker of higher recurrence risk in stage II colon cancer
- Published studies of the prognostic power of tumor grade in colon cancer have reported variable findings²⁻⁶
- Recent large studies, including QUASAR (n=711), PETACC-3 (n=420), and studies from NSABP and Cleveland Clinic (n=1007), have consistently found that high tumor grade is not associated with higher recurrence risk in stage II colon cancer
- Known association of grade with pathological markers such as MMR, tumor histology and tumor location underscores the need to examine grade in the context of these markers
- An added challenge is the existence of multiple systems for colon tumor grading, without a standardized approach⁷
- Standardized, reproducible assays are needed for decision-making in clinical practice.
- The 12-gene colon cancer Recurrence Score, as an example, is a standardized, clinically
- validated assay which has been analytically validated for reproducibility and precision⁸
- There is little data regarding inter-reader reproducibility of colon cancer tumor grade⁹⁻¹¹

Table 1. High Tumor Grade is Not a Marker of Higher Recurrence Risk in Stage II Colon Cancer

Source	Stage / Treatment	N (patients)	HR (High Vs. Low Grade) p-value
O'Connell, et al ² , NSABP, CCF ASCO 2010	Stage II Surgery alone	634	0.58 for RFI p=0.033
Quah, et al ³ , MSKCC DCR 2008	Stage II Surgery alone	448	HR for DSS not reported p=ns
QUASAR⁴, ASCO 2009	Stage II Surgery alone	711	0.62 for RFI p=0.026
PETACC-3 ⁵ , ASCO 2009	Stage II 5FU ± Irinotecan	420	0.60 for RFS p=0.55
CALGB 9581 ⁶ , ASCO 2011	Stage II Surgery alone	690	0.74 for RFI p=0.11

RFI - recurrence free interval; DSS - disease specific survival; RFS - recurrence free survival

OBJECTIVES

- Examine association of tumor grade with recurrence in the context of:
- Clinical and pathological covariates such as mismatch-repair (MMR), mucinous histology and tumor location
- 12-gene colon cancer Recurrence Score (RS) previously validated in stage II colon cancer patients from QUASAR⁴
- Characterize agreement of two methods for tumor grading

Methods

• Tumors from 504 stage II colon cancer patients treated with surgery alone at the Cleveland Clinic were graded independently by two academic GI pathologists (P1, P2) using the grading methods from their colon cancer clinical practice

Table 2. Tumor Grading Methods

% tumor with gland-like structures	Pathologist 1	Pathologist 2*
>95%	Well	
50-95%	Moderate	LOW
<50%	Poor	High

- * Considered all mucinous tumors as high grade
- MMR was assessed by immunohistochemistry (IHC) for hMLH1 and hMSH2 using two 5 µm sections on glass slides
- The IHC testing was conducted by the Cleveland Clinic Department of Pathology using antibody clones MSH2 (FE-11) and MLH-1 (G168-15) from Biocare Medical (2940 Camino Diablo, Suite 300 Walnut Creek, CA 94597).
- Gene expression was quantitated by RT-PCR from 30µm manually microdissected, fixed paraffinembedded primary colon cancer tissue to obtain the 12-gene RS

ANALYSIS **M**ETHODS

- assessed using chi-square tests
- cancer
- hazards regression¹² - Univariate

RESULTS

80%				75%			
70%							
60%							
50%							
40%							
30%							
20%							
10%		7%					
0%			Γ				
	1	Low	Inte	ermedi	iate		
	Ĺ		γ				
C	Combined into "Low Grade"						
	in s	subse	equent a	analy	ses		

Relationship of tumor grade and recurrence in the context of mismatch repair (MMR) status, tumor location, grading schema, mucinous histology, and the 12-gene Recurrence Score in 504 stage II colon cancer patients treated with surgery alone at the Cleveland Clinic

G. lezza¹, F. L. Baehner^{1,2}, M. Lopatin², C. Millward², K. Clark-Langone², M. Lee², I.C. Lavery³ ¹University of California San Francisco; ²Genomic Health, Inc., Redwood City, CA; ³Cleveland Clinic, Cleveland, OH

Figure 1. Colon Carcinomas

Low Grade, Mucinous Histology

High Grade, Mucinous Histology

Low Grade, Non-Mucinous Histology

Note: Mucinous histology as assigned by pathologist P2

Associations between either grade and MMR status, tumor location and mucinous histology were

• Endpoint: time from surgery to first colon cancer recurrence or death due to recurrence of colon

Association between either grade and risk of recurrence was assessed using Cox proportional

- Multivariable Cox regression including RS, MMR, tumor location and mucinous histology • Using the two-tier scheme, agreement between grade assessments by two pathologists was assessed using Cohen's kappa statistic¹³

Figure 2. Distribution of Grade

Grade by Pathologist 1 (P1)

Grade by Pathologist 2 (P2)

Figure 3. Distribution of Pathologic Markers High vs. Low Grade

Y-axis: percentage of patients with high (or low) grade, as indicated, with the tumor characteristics shown on the x-axis. * Mucinous histology was assessed by P2 only.

- High grade tumors were more likely to be MMR Deficient and right-sided compared to low grade tumors for both P1 and P2
- mucinous tumors to high grade)

Table 3. Association of Grade with Recurrence Risk (Univariate Analyses)

Grade	HR	HR 95% CI	P value
P1 Grade: High vs Low	0.78	(0.40,1.53)	0.46
P2 Grade: High vs Low	0.63	(0.36,1.12)	0.099

• In univariate analyses, P1 grade was not associated with risk of recurrence while P2 high grade trended to lower recurrence

Difference in HR's appeared to be relatively small and confidence limits overlapped substantially

Table 4. Association of Grade with Recurrence Risk in the Context of Pathological Markers

P1 Grade

MMR status	Ν	HR	HR 95% CI	P value	MMR status	N	HR	HR 95% CI	P value
Deficient	79	0.78	(0.15,4.01)	0.76	Deficient	79	0.59	(0.13,2.65)	0.50
Proficient	392	0.88	(0.42,1.86)	0.74	Proficient	393	0.73	(0.37,1.45)	0.35
Interaction of P1	grade and	d MMR: p=	=0.89		Interaction of P2	2 grade and	d MMR: p=	=0.80	

nteraction of P1 grade and MMR: p=0.89

Tumor location	Ν	HR	HR 95% CI	P value	Tumor location	Ν	HR	HR 95% CI	P value
Right	234	0.31	(0.09,1.01)	0.022	Right	234	0.34	(0.14,0.84)	0.009
Other	268	1.81	(0.80,4.11)	0.18	Other	270	1.11	(0.53,2.35)	0.78
Letens effers of D4	tene etiene etiene en le cetiene n - 0.044						040		

Interaction of P1 grade and tumor location: p=0.011

Histology	Ν	HR	HR 95% CI	P value	Histology	Ν	HR	HR 95% CI	P value
Mucinous	107	0.82	(0.18,3.82)	0.80	Non-mucinous	397	0.58	(0.21,1.61)	0.26
Non-mucinous	395	0.79	(0.37,1.66)	0.52					
		·							

Interaction of P1 grade and mucinous histology: p=0.96

- defined by MMR, tumor location or mucinous histology
- No evidence of interaction was observed between grade and MMR and between P1 grade and mucinous histology (all p>0.80)
- The relationship of grade with recurrence appears to vary depending on tumor location (both p<0.05 for test of interaction)
- (p=0.022 for P1 and p=0.009 for P2)
- though P1 high grade trended towards higher risk of recurrence (p=0.18)

Proportion of mucinous tumors was similar for high and low grade by P1 (P2 assigned all

P2 Grade

Interaction of P2 grade and tumor location: p=0.046

• Neither grade was significantly associated with higher risk of recurrence in subsets of patients

• High grade was significantly associated with lower risk of recurrence in right-sided tumors

• Association of grade with recurrence risk was not significant in other (not right-sided) tumors

Table 5. Association of Grade with Recurrence Risk in Conjunction with RS and Pathological Markers

P1 (P2 Grade					
Variable	HR	HR 95% CI	P value	Variable	HR	HR 95% CI	P value
P1 Grade: High vs Low in Right Tumors	0.31	(0.09,1.03)	0.03	P2 Grade: High vs Low in Right Tumors	0.47	(0.14,1.56)	0.19
P1 Grade: High vs Low in Other Tumors	1.55	(0.64,3.73)	0.35	P2 Grade: High vs Low in Other Tumors	1.01	(0.29,3.53)	0.98
MMR-D vs MMR-P	0.75	(0.33,1.71)	0.48	MMR-D vs MMR-P	0.76	(0.32,1.76)	0.50
Mucinous Tumor	0.41	(0.20,0.85)	0.01	Mucinous Tumor	0.60	(0.18,2.00)	0.42
Tumor Location (Right vs Other)	1.53	(0.89,2.63)	0.13	Tumor Location (Right vs Other)	1.41	(0.81,2.45)	0.23
RS per 25 units	2.65	(1.66,4.22)	<0.001	RS per 25 units	2.81	(1.77,4.46)	<0.001
			• •				

Interaction of P1 grade and tumor location: p=0.03

• After controlling for MMR status, mucinous histology, and Recurrence Score, high tumor grade was not associated with higher risk of recurrence

- For right-sided tumors, P1 tumor grade was associated with lower recurrence risk - For other tumors (not right-sided), neither tumor grade was significantly associated with recurrence

• A wide range of RS values is observed for high and low grade by either pathologist, including a substantial proportion of patients with high Recurrence Score disease (RS \geq 41) with either high or low grade

RS values cannot be predicted from tumor grade

Table 6. Agreement Between Two Pathologists

		All Pa	tients			Non-I	mucino)
		P1 G	rade	_			P1 G	
		Low	High	Total			Low	
irade	Low	315	34	349	rade	Low	315	
P2 G	High	98	55	153	P2 G	High	13	
	Total	413	89	502		Total	328	
			·		*	107 (21%) c to mucinous	of 502 paties histology	9

Kappa = 0.30, 95% CI (0.21,0.39)

Kappa = 0.52, 95% CI (0.40,0.64)

 Tumor Grade: Using the two-tier scheme, agreement between the two pathologists was low in all patients and moderate if mucinous tumors were excluded

Figure 4. Distribution of RS Values by Tumor Grade

Cleveland Clinic[®]

Interaction of P2 grade and tumor location: p=0.22

n=152

Non-mucinous tumors*

P1 Grade

igh	Total	
34	349	
33	46	
67	395	

107 (21%) of 502 patients were excluded due

STRENGTHS AND LIMITATIONS

Strengths

- A large dataset of stage II colon cancer patients treated with surgery alone
- Central grade assessments by two academic pathologists with specialization in GI cancer
- 12-gene Recurrence Score assessment using established, reproducible RT-PCR platform
- IHC testing for MMR was performed centrally by a single laboratory (Cleveland Clinic Department of Pathology)

Limitations

- Exploratory analysis in studies designed for development of the RS
- Method of grading is confounded with pathologist effect
- Different grading of mucinous tumors by P1 and P2

SUMMARY

- High tumor grade was not found to be a marker of higher recurrence risk in stage II colon cancer by either of two pathologists using their methods used for clinical practice
- Contrary to conventional expectations, but consistent with other reported studies, high grade was associated in some circumstances with lower risk of recurrence in stage II colon cancer Importantly, accounting for MMR status did not affect this conclusion – the known association
- of MMR-D with high grade does not explain the lower recurrence risk observed with high grade in stage II colon cancer
- Inter-pathologist agreement on colon tumor grade was modest overall in this study, and moderate after excluding mucinous cases, even with central expert review

CONCLUSIONS

- These results highlight the need for standardized assays and critical evaluation of the underlying data for markers used to make treatment decisions in the clinic
- Based on data from four large studies (NSABP/CCF, QUASAR, PETACC-3, and CALGB 9581), the continued inclusion of tumor grade as a marker of high recurrence risk in clinical practice guidelines for stage II colon cancer should be questioned
- For the stage II colon cancer patient, recurrence risk should be assessed using T stage, MMR, and RS, the three key predictors of recurrence risk in stage II colon cancer, as reported in the QUASAR validation study

References

- 1. National Comprehensive Cancer Network[®] Practice Guidelines in Oncology. Colon Cancer. www.nccn.org, v2.2011.
- 2. O'Connell MJ, Lavery I, Yothers G. Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J Clin Oncol. 2010;28(25):3937-44.
- 3. Quah HM, et al. Identification of Patients with High-Risk Stage II Colon Cancer for Adjuvant Therapy. *Dis Colon Rectum*. 2008;51:503-507. 4. Gray R, et al. Validation study of a quantitative multi-gene RT-PCR assay for assessment of recurrence risk in stage II colon cancer patients,
- J Clin Oncol. In press. 5. Roth AD et al. Stage-specific prognostic value of molecular markers in colon cancer: Results of the translational study on the PETACC 3-EORTC 40993-SAKK 60-00 trial, *J Clin Oncol.* 27:15s, 2009 (suppl; abstr 4002)
- 6. Venook AP, Niedzwiecki D et al. Validation of a 12-gene colon cancer recurrence score in patients with stage II colon cancer from CALGB 9581, *J Clin Oncol.* 29: 2011 (suppl; abstr 3518)
- 7. Compton CC. Optimal pathologic staging: defining stage II disease. *Clin Cancer Res*. 2007;13:6862s-70s.
- 8. Clark-Langone KM, Sangli C, Krishnakumar J, et al. Translating tumor biology into personalized treatment planning: analytical performance characteristics of the Oncotype DX[®] Colon Cancer Assay. BMC Cancer. 2010;10:691.
- 9. Chandler I, Houlston RS. Interobserver agreement in grading of colorectal cancers-findings from a nationwide web-based survey of histopathologists. *Histopathology*. 2008;52(4):494-9.
- 10. Thomas GD, Dixon MF, Smeeton NC, et al. Observer variation in the histological grading of rectal carcinoma. J Clin Pathol. 1983;36(4):385-91. 11. Jass JR, Atkin WS, Cuzick J, et al. The grading of rectal cancer: historical perspectives and a multivariate analysis of 447 cases. *Histopathology*. 1986;10(5):437-59.
- 12. Cox DR, Oakes D. Analysis of Survival Data. London, England: Chapman and Hall; 1984.
- 13. Fleiss JL. Statistical Methods for Rates and Proportions. New York, NY: John Wiley and Sons; 1981: 212.

Cleveland Clinic is a registered trademark of the Cleveland Clinic Foundation Corp. Genomic Health, Oncotype DX, and Recurrence Score are registered trademarks of Genomic Health, Inc. National Comprehensive Cancer Network is a registered trademark of NCCN, Inc. NCCN does not endorse any product or therapy.